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Abstract. The low-temperature Glauber dynamics of the Sherrington–Kirkpatrick spin-glass
model is studied using a combination of theory and computer simulations. The theoretical
approach follows the spirit of Mori’s continuous fraction expansion. The predicted amplitude
of the long-time decay of the time-dependent equilibrium spin–spin correlation function agrees
well with the Glauber dynamics simulation results. The theory predicts a universal dynamic
exponent of 1

2 in the low-temperature phase. The simulations cannot distinguish between a
universal exponent and a temperature-dependent one.

1. Introduction

In the preceding paper [1], we presented a new approach to Glauber dynamics of the
Sherrington–Kirkpatrick (SK) spin-glass model [2–4]. Our method gives very accurate
results for the time-dependent equilibrium spin–spin correlation function in the high-
temperature phase (T > Tc). Here we discuss the theoretical predictions for the low-
temperature phase dynamics and compare them with the Glauber dynamics simulations
results.

The motivation for this study is as follows. There are two versions of the SK model
[2] that are discussed in the literature. One of them is studied theoretically and the other
both theoretically and (mainly) in computer simulations. The first is the soft-spin version
of the SK model with Langevin dynamics. Its studies were pioneered by Sompolinsky
and Zippelius (SZ) [5] who found a continuously varying dynamic exponent in the low-
temperature phase. More recently, there was a series of very interesting results concerning
off-equilibrium dynamics of the soft-spin SK model [6].

The second version is the original hard(Ising)-spin SK model with Glauber dynamics.
This model was a subject of early studies [2, 7] in which a universal (temperature-
independent) dynamic exponent was found. Later work [8] raised a possibility of a non-
universal exponent. More recently, a novel approach to Glauber dynamics has been proposed
by Coolen, Sherrington, and coworkers [9] (note that these authors were not concerned with
the above-mentioned dynamic exponent). This new approach was an inspiration for our
work.

The main use of the SK model with Glauber dynamics is in computer simulations
[2, 3, 10]. Results of such simulations are compared not only with the theoretical studies
of the same model but also with those of the soft-spin model. The question then arises
whether equivalence of these two models has been established. In particular, is there a
continuously varying dynamic exponent in the low-temperature phase of the SK model with
Glauber dynamics?

0305-4470/98/5010053+11$19.50c© 1998 IOP Publishing Ltd 10053
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To the best of our knowledge, the only theoretical paper [11] that claimed to have
rederived the SZ results for the hard-spin model was criticized [12] and the validity of its
predictions is uncertain. In addition, although some results of the SZ theory were verified in
computer simulations [10], we are not aware of any convincing simulational observation of a
continuously varying dynamic exponent†. In view of these facts we consider the question of
‘what is the low-temperature dynamic behaviour of the SK model with Glauber dynamics’
to be an open problem.

Here we report a theoretical and simulational study of the low-temperature Glauber
dynamics of the SK model. Following SZ we study time-dependent spin–spin correlations
in equilibrium (we implicitly assume equilibrium within a single pure state)‡.

The theoretical analysis follows that presented in [1]. It is loosely based on Mori’s
[15] continuous fraction expansion. In contrast to most of the other works we study the
dynamics for a given sample of coupling constants and average over the samples at the very
end. The zeroth-order approximation is equivalent to a disorder-dependent version of the
local equilibrium approximation of Kawasaki [16]. The first-order approximation includes
an irreducible memory matrix.

Predictions of both the zeroth- and the first-order approximations are expressed in terms
of the equilibrium spin correlations. In the low-temperature phase these correlations are
not known explicitly and, therefore, in order to test our theoretical predictions we have to
obtain them from computer simulations.

Computer simulations play a double role in this study. First, as stated in the preceding
paragraph, we use them to obtain the equilibrium spin averages. More importantly, we
monitor the dynamic quantities: time-dependent spin–spin correlation function and its first
time derivative. We use these dynamic results to test the accuracy of our theory and also
to attempt to verify the existence of a continuously varying dynamic exponent.

2. Theory

2.1. Definitions

We follow the notation of [1]. Briefly, the SK model consists of Ising spinsσi = ±1
interacting via infinite-range exchange coupling constantsJij ,

H = −
∑
i<j

Jij σiσj . (1)

The coupling constantsJij are quenched random variables distributed according to the
symmetric distributionP(Jij ) ∼ exp(−J 2

ij /(2J
2/N)).

We study the time-dependent spin–spin correlation function,

〈δσi(t)δσj 〉eq= 〈δσi exp(�t)δσj 〉eq. (2)

Here δσi is the fluctuation of the value of theith local spin,δσi = σi − 〈σi〉eq and 〈. . .〉eq

denotes the equilibrium average (implicitly restricted to a single pure state). Finally,� is

† Note that a temperature-dependent exponent found in [13] describes off-equilibrium energy relaxation whereas
the dynamic exponent studied by SZ [5] describes relaxation ofequilibrium magnetization fluctuations.
‡ Note that the problem that we address is different from that addressed by the off-equilibrium studies [6].
In particular, we assume that the system is in equilibrium and therefore time-translational invariance of the
correlation functions is valid. Alternatively, in the language of the off-equilibrium papers [6, 14], we study spin–
spin correlations〈δσ (tw + t)δσ (tw)〉 in the regime 06 t � tw , tw → ∞. In this regime equilibrium within a
given pure state is established and time-translational symmetry is satisfied. We carefully check that our Glauber
dynamics simulations are in the same dynamical regime (see section 3).
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the evolution operator,

� = −
∑
i

(1− Si)wi (3)

with Si being the spin-flip operator,Siσi = −σi , andwi being the transition rate,

wi = (1− σi tanh(βhi))/2 (4)

wherehi is a local magnetic field acting on theith spin,

hi =
∑
j 6=i

Jij σj . (5)

2.2. Zeroth-order approximation

To derive a zeroth-order approximation for the equation of motion for the time-dependent
spin–spin correlation function we follow [1, section 2.2] and obtain

∂t 〈δσi(t)δσj 〉eq= −〈1− σi tanh(βhi)〉eq

∑
l

Ail〈δσl(t)δσj 〉eq. (6)

HereA is the inverse matrix of spin correlations,∑
j

Aij 〈δσj δσk〉eq= δik. (7)

Note thatA is equal to the Hessian of the Thouless–Anderson–Palmer [17] free energy.
Above Tc the Hessian is known explicitly. BelowTc it can be expressed in terms of local
(sample-dependent), equilibrium site magnetizations [4],

Aij = −βJij + δij
(∑

k

(βJik)
2(1−m2

k)+
1

1−m2
i

)
(8)

wheremi is the local magnetization at sitei, mi = 〈σi〉eq.
To get explicit results we have to solve (6). To this end we decompose the matrix of

the spin correlations,

〈δσi(t)δσj 〉eq=
∑
λν

aλν(t)t
i
λt
j
ν (9)

wheret iλ andt iν are the eigenvectors of the matrix of inverse spin correlations (Hessian) and
λ andν are the corresponding eigenvalues. Note that at an initial timeaλν(t = 0) = λ−1δλν .
Substituting (9) into (6) we get the equation of motion for the amplitudes,

∂taλν(t) = −
∑
µ

µ
∑
i

t iλ〈1− σi tanh(βhi)〉eqt
i
µaµν(t). (10)

At this point we make two assumptions. At present, the only way to check them isa
posteriori. First, since at the initial time the matrix of amplitudes,aλν , is diagonal, we shall
assume that we can neglect off-diagonal terms at later times. This amounts to the following
approximation in the equation of motion (10)∑

i

t iλ〈1− σi tanh(βhi)〉eqt
i
µ ≈ δλµ

∑
i

t iλ〈1− σi tanh(βhi)〉eqt
i
λ. (11)

Now we can write down a formal solution for the spin–spin correlation function. In the
following we will restrict ourselves to the diagonal part, i.e.〈δσi(t)δσi〉eq,

〈δσi(t)δσi〉eq=
∑
λ

t iλ
1

λ
exp(−t/τ (λ))t iλ. (12)
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The off-diagonal part vanishes after sample averaging. Here the relaxation timeτ(λ) is
given by

τ(λ)−1 = λ
∑
i

t iλ〈1− σi tanh(βhi)〉eqt
i
λ. (13)

Since the spectrum of the eigenvalues of the Hessian extends to zero asρ(λ) ∼ λ1/2 [18]
it follows from equation (12) that the dynamic exponent describing the long-time decay of
the spin correlations is temperature independent and equal to1

2.
To calculate expression (12) explicitly for all times we need the whole spectrum of the

eigenvalues and eigenvectors of the Hessian. However, in order to get the amplitude of the
t−1/2 tail in the spin–spin correlations we need only the low-λ behaviour of the distribution
of the eigenvalues and the eigenvector corresponding to the zeroth eigenvalue,

〈δσi(t)δσi〉eq≈ α
√
πti0t

i
0

(∑
i

t i0〈1− σi tanh(βhi)〉eqt
i
0

)−1/2

t−1/2. (14)

Here the constantα is determined by the low-λ behaviour of the spectrum of the eigenvalues,

ρ(λ) ≈ αλ1/2 (15)

and, according to Bray and Moore’s [18] analysis,

α = (1/π)(βJ )−3(1−m2)3
−1/2

. (16)

In equation (16) the overline denotes ‘spatial’ averaging,

(1−m2)3 = N−1
∑
i

(1−m2
i )

3. (17)

Finally, in equation (14)t i0 denotes the eigenvector corresponding to the zeroth eigenvalue
of the Hessian matrix,∑

j

{
− βJij + δij

(∑
k

(βJik)
2(1−m2

k)+
1

1−m2
i

)}
t
j

0 = 0. (18)

Our second assumption concerns the eigenvectort0. We assume that in solving
equation (18) we can use the followingansatz,

t i0 = ci +
∑
j

βJij dj (19)

where, implicitly, ci and di have nonzero spatial averages. Substituting (19) into
equation (18) we obtain

ci

(
(βJ )2(1− q)+ 1

1−m2
i

)
− di(βJ )2+

∑
j

βJij

{(
(βJ )2(1− q)+ 1

1−m2
i

)
dj − cj

}
−
∑
j,l 6=i

β2JijJjldl = 0. (20)

Note that in writing equation (20) we follow Bray and Moore [18] and approximate∑
k(βJik)

2(1−m2
k) by (βJ )2(1− q) whereq = m2.

We now assume that the ‘off-diagonal’ terms in equation (20) (i.e. the last two sums)
average out to 0. In this way we obtain the followingapproximateexpression for the
unnormalized zeroth eigenvector

t i0 =
(βJ )2

((βJ )2(1− q)+ 1
1−m2

i

)
+
∑
j

βJij . (21)
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Finally, normalizing (21), substituting the result into equation (14), and using (16) we
obtain an explicit expression for the long-time asymptotics of the spin–spin correlations.
After spatial averaging the result reads

〈δσi(t)δσi〉eq≈ 1√
π

1

(βJ )3(1−m2)3
1/2

×
 1+ (βJ )2 (1−m2)2

((βJ )2(1−q)(1−m2)+1)2

(1− 〈σi tanh(βhi)〉eq)(1+ (βJ )2 (1−m2)2

((βJ )2(1−q)(1−m2)+1)2 )

1/2

t−1/2. (22)

It is worth noticing at this point that if we had assumed the eigenvectors of the Hessian
to be uncorrelated with〈σi tanh(βhi)〉eq (as we did when we analysed the high-temperature
phase dynamics) we would have obtained the following result,

〈δσi(t)δσi〉eq≈ 1√
π

1

(βJ )3(1−m2)3
1/2

1

1− 〈σi tanh(βhi)〉eq
1/2 t

−1/2. (23)

As we shall show in section 4, Glauber dynamics simulation results seem to agree with
equation (22) rather than with equation (23).

2.3. First-order approximation

In the zeroth-order approximation we neglected the memory matrix entirely. In the next
step (first-order approximation) we include it approximately. To this end we repeat the
analysis of [1, section 2.3] and arrive at the following set of equations∫ t

0

∑
j

(δij δ(t − t ′)+M irr
ij (t − t ′)〈1− σj tanh(βhj )〉−1

eq )∂t ′ 〈δσj (t ′)δσk〉eq

= − 〈1− σi tanh(βhi)〉eq

∑
l

Ail〈δσl(t)δσj 〉eq. (24)

∂tM
irr
ij (t) =

∑
kl

〈DiQ0�
irrQ0Dk〉eqCklM

irr
kj (t). (25)

HereM irr is the irreducible [19] memory matrix.
In the preceding paper we invoked a high-temperature-expansion argument in order to

simplify (24). Here we cannot resort to the same argument and therefore we have to replace
it with two assumptions. Both of these assumptions concernequilibrium averages.

First, we assume that the off-diagonal equilibrium correlations betweenirreducible
quantities (i.e. quantities that have spin correlations subtracted out) are higher order in
N−1/2 than the spin–spin correlations. For example, we assume that the〈DjDk〉eq for
j 6= k are higher order inN−1/2 than 〈δσiδσj 〉eq. The argument is that the former needs
at leasttwo independent ‘connections’ betweeni and j , each of them being of the order
of spin correlations. This of course does not hold for the diagonal part: both〈DiDi〉eq and
〈δσiδσi〉eq are finite (of the order ofN0).

Second, we assume that we can keep only the diagonal part of the memory matrix
evolution operator〈DiQ0�

irrQ0Dj 〉eq,

〈DiQ0�
irrQ0Di〉eq= −(βJ )2〈1− tanh2(βh)〉eq(〈tanh4(βhi)〉eq− 〈tanh2(βhi)〉2eq). (26)

The second assumption is based on the explicit form of the off-diagonal part,

〈DiQ0�
irrQ0Dj 〉eq∼

∑
l 6=i,l 6=j

(Ailj − BilBj l)JilJjl i 6= j (27)
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whereA and B denote equilibrium averages. If the averages inA and B that involve
different sites are decoupled, the term in parenthesis at the right-hand side of equation (27)
vanishes. Hence, a simple power-counting argument suggests that the off-diagonal part is
of higher order inN−1/2 than the spin–spin correlations and, therefore, can be neglected.

The above assumptions allow us to reduce (24). Now, as in [1], only the diagonal
elements of the memory matrix contribute and their time evolution is given by

∂tM
irr
ii (t) = 〈DiQ0�

irrQ0Di〉eqCiiM
irr
ii (t) (28)

where

M irr
ii (t = 0) = C−1

ii = 〈1− tanh2(βhi)〉eq(1− Aii〈1− tanh2(βhi)〉eq). (29)

Equations (24) and (28) with (26) and (29) constitute our first-order approximation. The
only assumptions/approximations made up to this point (apart from neglecting higher-order
memory functions) are the two approximations concerningequilibriumcorrelation functions:
we assumed that the off-diagonal irreducible correlation functions and off-diagonal terms
of the approximate evolution operator for the memory matrix can be neglected.

Within these two assumptions it is possible to go further and consider higher-order
approximations. The structure of the theory will remain the same: at a higher-order level a
new (diagonal) memory matrix appears.

It should be noted here that the first-order memory function is regular in the low-
temperature phase. Therefore it will not change the long-time asymptotic result of the
zeroth-order theory: spin–spin correlations decay ast−1/2. In the absence of any reason to
the contrary we shall assume that all the higher-order memory functions are regular.

In order to get explicit results at the first-order level one has to solve equations (24) and
(28). Again, to calculate spin–spin correlations for all times we need the whole spectrum
of the eigenvalues and eigenvectors of the Hessian (and other equilibrium correlations).
On the other hand the calculation of the amplitude of thet−1/2 tail is easier. To get the
explicit expression for the tail amplitude we use approximations described in the previous
section. First, we decompose the matrix of the spin correlations, then we neglect the off-
diagonal term in the equations of motion for the amplitudes, and finally we use approximate
expressions for the zeroth eigenvector.

3. Computer simulations

We performed a series of Glauber dynamics simulations of the SK model at temperatures
Tc, 0.5Tc and 0.1Tc using the algorithm of Mackenzie and Young [10]. We used different
equilibration times and sample sizes as described below.

We monitored the time-dependent spin–spin correlation function,

[〈σi(t)σi(0)〉eq] = (1/N)
∑
i

〈σi(t)σi(0)〉eq (30)

and its time derivative,

d

dt
[〈σi(t)σi(0)〉eq] = (1/N)

∑
i

〈(tanh(βhi(t))− σi(t))σi(0)〉eq. (31)

We monitored the derivative independently because, in contrast to the spin–spin correlation
function, the derivative does decay to zero in the low-temperature phase. Thus it is easier
to get a dynamic exponent out of the derivative.

There are two delicate issues in simulating low-temperature dynamics of spin glasses.
The first concerns the size of the simulated system (i.e. finite sample size effects). The
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second is whether the system has been well equilibrated. Of course these two issues are
coupled together.

For a finite size sample there are transitions between different ‘pure’ [3] states that are
absent in the thermodynamic limit. In particular, for an SK spin glass it was found [10] that
there is a spectrum of relaxation times associated with transitions between different pure
states that diverge like exp(cN1/4) whereN is the number of spins. In addition, at zero
external field there is an additional relaxation timescale proportional to exp(dN1/2) that is
associated with reversal of all the spins.

It follows that, for a given sample size, the results of finite size simulations are
representative of the thermodynamic limit results only for times much shorter than the
above-mentioned relaxation times. Here we are presenting data for the correlation functions
for times up to 100 Monte Carlo steps per spin (MCS). A comparison of this timescale,
100 MCS, with the finite-sample relaxation times obtained in [10] shows that our results
should be representative of the thermodynamic limit results. In particular, we believe that,
for our sample sizes and on the timescale of 100 MCS, we cannot see fluctuations associated
with transitions between different states.

One should realize that, in addition to the finite size effects mentioned above there are
other, more conventional, finite size effects. For example we found that thet = 0 value
of the time derivative of the spin–spin correlation function atT = 0.1 decreases by about
10% asN increases between 3000 and 10 000.

The second issue deals with equilibration. This problem has been treated by a brute
force method. We were most concerned with the lowest temperature (T = 0.1Tc) and
performed detailed studies in this case. The approach was as follows: to establish the
required equilibration time,τeq, we monitored the time derivative for a number of different
equilibration times. We started with the largest sample size we could simulate (N = 10 000)
and used large numbers of samples (nsample= 50). We used equilibration times of 100, 1000,
10 000 and 100 000 MCS. The last one was the longest equilibration time we could achieve
for this sample size. Next, we collected the data for the time derivative (31). For each case
the data were collected (after equilibration) over time intervals of 500 MCS. It was clear
from the resulting plot that there was a systematic difference between the results obtained
with the two longest equilibration times. In addition, the difference was an increasing
function of time. This was, of course, a clear signature ofaging [6].

We should emphasize at this point that, strictly speaking, we are simulating off-
equilibrium spin–spin correlations〈δσ (teq + t)δσ (teq)〉. In order to be able to compare
our simulations with the theoretical predictions that result in time-dependent spin–spin
correlationsin equilibriumwe have to make sure that the equilibration timeteq is sufficiently
large. Specifically, as discussed in [6, 14], only in the regime 06 t � teq is
time-translational invariance (approximately) satisfied. Our operational criterion is that
〈δσ (teq+ t)δσ (teq)〉 should be independent ofteq.

Furthermore, we would like to point out that because of aging we cannot monitor
equilibration by looking for a saturation of the total energy as a function of the equilibration
time (the same comment applies to any single-time quantity).

Since we could not increase the equilibration time we switched to smaller samples. We
usedN = 4000 andnsample= 100. At this size we could extend the equilibration time
up to 500 000 MCS. The results of the two runs (τeq = 100 000 andτeq = 500 000) are
shown in figure 1. It seems now that the results are independent of the equilibration time
up to t ≈ 40. We believe that the difference between the two runs seen at the longest times
(506 t 6 100) is associated with enormous sample-to-sample fluctuations rather than with
too-short equilibration time.
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Figure 1. Time derivative of spin–spin correlation function atT = 0.1Tc. Sample size
N = 4000, number of samples in each case,nsample= 100. Broken curve: equilibration time,
τeq= 100 000; full curve:τeq= 500 000. Error bars are plus/minus three standard deviations.

Figure 2. Time derivative of spin–spin correlation function atT = 0.5Tc. Broken curve: sample
sizeN = 3000, number of samples,nsample= 200, equilibration time,τeq= 10 000. Full curve:
N = 3000,nsample= 30, τeq= 50 000. Error bars are plus/minus three standard deviations.

We also studied time dependence of correlation functions atT = 0.5Tc. We used
slightly smaller samples,N = 3000 larger number of samples,nsample= 200, and an order
of magnitude shorter equilibration time,τeq= 10 000. We also runnsample= 30 samples of
the same size withτeq= 50 000. The results were virtually identical, see figure 2. Thus we
concluded that theN = 3000,τeq= 10 000 samples were well equilibrated.

Finally, for a comparison we also show the data forT = Tc. At this temperature we
usedN = 3000,nsample= 100 andτeq= 10 000 MCS.

We should add that during some of the simulation runs we also collected the data for
the equilibrium correlations that enter into the theoretical expression for the amplitude of
the algebraic tail of the correlation function. The equilibrium data were collected (after
equilibration) over time intervals of 500 or 1000 MCS.
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Figure 3. Time derivative of spin–spin correlation function at and below the transition
temperatureTc. Symbols: Glauber dynamics simulation data; squares:T = Tc (100 samples
of 4000 spins each,τeq = 10 000); triangles:T = 0.5Tc (30 samples of 4000 spins each,
τeq = 50 000); circles: T = 0.1Tc (100 samples of 4000 spins each,τeq = 500 000); full
lines: long-time asymptotic decays predicted by the first-order approximation; dotted lines:
first-order approximation predictions obtained byneglectingthe correlations between the zeroth
eigenvector of the Hessian and other equilibrium quantities. Error bars are plus/minus three
standard deviations. Note that for the time derivative the present theory predicts∼t−3/2 decay.

Figure 4. Linear–linear plot of the data of figure 5.

4. Comparison: theory versus simulations

In figures 3 and 4 we compare predictions of the first-order approximation with the results
of the computer simulations. The theory describes correctly the temperature dependence
of the amplitude of the long-time part of the time derivative of the spin correlations. The
simulation results are consistent with at−3/2 tail in the derivative (and at−1/2 tail in the
spin–spin correlations) at all three temperatures. However, considerable sample-to-sample
fluctuations do not allow us to rule out a nonuniversal dynamic exponent.

Parenthetically, we would like to remark that had we assumed the eigenvectors of the
Hessian to be uncorrelated we would have obtained equation (23) (and its generalization in
the first-order approximation) for the long-time behaviour of the correlation function. As
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shown in figure 3 (dotted line), atT = 0.1Tc the amplitude of the derivative that results
from neglecting these correlations exceeds the simulation data by a factor of about 2.5.

It should be noticed here that the simulation datacan be fitted to power law decays
with temperature-dependent exponents. For example, fromT = 0.1Tc data we obtain at−1.2

decay (of the time derivative of spin–spin correlations) fort between 4 and 20. However, it
seems to us that in this time region one should not see the asymptotic exponent yet. Indeed,
a power law fit toT = Tc data in the same time region gives at−1.4 decay whereas the
asymptotic exponent is equal to 1.5. Moreover, a full analytical calculation suggests that at
T = Tc the asymptotic behaviour is reached after about 30 MCS. We believe that at lower
temperatures the asymptotic behaviour is reached even later.

In our opinion, in order to obtain reliable estimates for the dynamic exponents one
would have to extend the present simulations up to at least a few hundred MCS. This would
require much longer equilibration times and more sample averaging. In addition sample
size dependence would have to be carefully investigated: for short and intermediate times
(when the sample-to-sample fluctuations are small) we see systematic size dependence.
At T = 0.1Tc the derivative of the spin–spin correlations decreases by about 10% asN

increases between 3000 and 10 000; the effective exponent (for 46 t 6 20) increases by
about the same amount.

At present, our computational resources do not allow us to pursue the above described
simulation program. It is our hope that this work will stimulate renewed interest in long-time
dynamics of the hard-spin SK model.

5. Conclusions

We have presented here a theory for Glauber dynamics of the SK model. Within
our theory at thenth level of approximation the dynamics of spin–spin correlations (in
equilibrium) is described by a coupled set of equations involving, in addition to the spin–
spin correlations,n irreducible memory matrices (memory functions). Under rather mild
assumptions concerningequilibrium spin correlations only the diagonal elements of the
memory matrices contribute. Furthermore, both the initial values and the relaxation times
for the memory matrices are finite. It thus seems that, at all levels, irreducible memory
functions do not change the Glauber dynamics of hard spins qualitatively, and that the
dynamic exponent is equal to that predicted by the zeroth-order approximation. This has
to be contrasted with Langevin dynamics of the soft-spin SK model where, according to
Sompolinski and Zippelius [5], the memory function (i.e. the self-energy) slows down the
dynamics qualitatively and leads to a nonuniversal dynamic exponent.

Unlike in the high temperature phase, belowTc the zeroth-order equation of motion
cannot be solved exactly. Our approximate solution leads to a universal dynamic exponent
equal to 1

2.
To check the theory we performed extensive Glauber dynamics simulations of the SK

model. We showed that the theory predicts correctly the amplitude of the long-time decay
of the spin–spin correlations (note that the theory, by construction, reproduces exactly the
short-time behaviour of the spin–spin correlations). However, the simulations were not able
to distinguish between a universal exponent and a temperature-dependent one.
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